sihu国产精品永久免费_日韩午夜在线视频_久久99中文字幕伊人_古代男男嗯…啊h总攻

萬泉河
WX:ZHO6371995,歡迎+
級別: 略有小成
精華主題: 0
發帖數量: 131 個
工控威望: 248 點
下載積分: 836 分
在線時間: 11(小時)
注冊時間: 2021-06-11
最后登錄: 2025-01-14
查看萬泉河的 主題 / 回貼
樓主  發表于: 2023-03-28 14:20
0325  【萬泉河】  當PLC編程煙臺方法遇到CHATGPT

今年以來,CHATGPT人工智能可以算做是最火爆的流行話題了。 到了工控行業,也不例外。 所有的工控人士都在關注它,兩方面:一,了解它能給自己的工作帶來什么幫助;二,自己的工作技能會不會被CHATGPT所替代,從而失去謀生的機會。

我自己更是如此。 事實上我是在去年底CHARGPT的概念爆出來的第一波就關注了。 從網上買了一個印尼的手機號接收驗證短信,再通過爬梯手段獲得了登錄的接口,做了一些測試驗證。

與其他一些行業,或者同行,對GPT大加贊賞的態度不同,我的測試結果下來,大失所望。 從另一個方面講,也大為安心,短時間內認為不會對我的工作造成什么影響。

我該做的事還是要繼續做,比如對LBP的移植開發。 而且發現,倡導參與的同行幾乎沒有。只要自己不做,這世界上就不會有別人去做。 永遠不可能指望自己啥都不做,所有人啥都不做,只需要坐在那兒喝茶刷短視頻,等著GPT升級換代了,自動就給完成了。

這是我這段時間仍然在堅持一個模塊一個單元的逐個做過來做LBP移植升級的原因。

也是我雖然計劃了寫一篇關于GPT對PLC編程設計工作的關系和影響的文章,卻一直沒有動手寫的原因。 實在忙的沒有時間和心情去寫。

當然,這段時間里,我也觀察了一些同行整理的使用GPT使用報告,雖說GPT已經從我注冊時候的GPT3到3.5到現在的4,但基本上沒有見到有價值的內容,也沒有看到有顛覆的趨勢。

寫一下我自己的理論分析以及未來的展望,算是立一個危險的FLAG, 隨時等著被打臉。就看打臉會在什么時候來了。

我個人倡導的PLC標準化編程煙臺方法的理念中,一個最重要的主線是高內聚低耦合。 這個概念是從IT行業學來的。但其實發現在IT行業的程序員反而對這一點并不是特別在意。 一方面他們個人編程技能特別高,不在乎耦合階段里面有些許的弱智邏輯。 另一方面,他們的應用場景通常都比較復雜,做不到完全的高內聚和低耦合。

然而PLC行業是個特殊的存在,在高內聚和低耦合方面可以做到完全徹底。 即我在多篇文章里表達過的,我們可以做到在耦合階段,完全沒有一點點邏輯。 全部只是變量和參數的錄入。
哪怕是一個取反信號, 簡單的“與”和“或”的邏輯都沒有。 數值加減更別提了。

讀者可以從我發布的80模擬量或者80雙聯開關的例子中發現這一點。

即,所有邏輯都在FB模塊中內聚完成。 不管功能需求多復雜,都會在內聚中,而不會釋放到外部的耦合階段產生任何影響。 如上一篇講到的移植LBP中的模擬量功能,具備了多觸摸屏交互功能,參數設定等功能,然而卻仍然在FB中實現,而調用環節絲毫不變化。

那么,我們以工作分工的高內聚和低耦合兩部分來面對GPT, 問一下GPT能幫我做哪方面的工作,是能做內聚還是耦合?

如果它能做內聚,那么這個提問場景就是:我想在SMART 200+KPT的環境中實現與LBP同樣UI的模塊設計,請幫我做出來。
GPT:…….

我前一篇文章講到規劃的模擬量模塊的接口有點多,導致變量耗盡,不得不用了一個MD變量的故事大家都看到了。 那么現在我省事了,等GPT隨便安排吧!能實現就行。

能嗎?

看來是不是有點難?

內聚的工作是人類的強項,內聚的本質是創新,人類的大多創新工作都是在內聚環節中實現的。 如果人類自己都沒有達到的創新,指望AI來替你實現?我覺得可能性極小。

那么咱們看一下要GPT幫忙做點耦合的工作吧!

問:我這兒有現成的模擬量處理的FB,已經對應了HMI畫面的模板,請按照符號表的80個變量,做出來PLC程序和觸摸屏畫面吧!

GPT:沒問題, SO EASY! 請給我完整規范的符號表,以及庫函數。 幾秒就好。 觸摸屏畫面也馬上就好。 等等,畫面布局怎么排布,是您自己來還是把工藝圖給我我來幫你做? 工藝圖給我的時候最好規范整齊標注好。

切,如果喂給它數據啥都規范整齊了,我還用得著AI嗎?我自己做個簡單的處理腳本,也本來就是幾分鐘完成的,而且還不需要人工檢查,百分百正確。

把一個FB塊調用80次這個事,非但不需要AI, 隨便找一個傻子都能看得懂,都能自己做。

所以,綜上所述,在煙臺方法面前, GPT一無用處。 內聚它做不了, 耦合我們用不著它來做。

要想它能做PLC標準化程序的模塊內聚,除非PLC行業大發展,大開源,網絡上的公開材料中煙臺方法的案例隨處可見,隨時可以喂給它讓他學習,學會。 然后才能倒過來輔助人類,給人類做助手,節省一定的勞力。

在此之前,我認為沒戲。

我們來看GPT現在實現的應用場景,通常是協助人類搜索整理海量資源中有用的信息,然后形成報告,提供給人類閱讀使用。

即,它是把一個客觀輸入條件,搜索歸納總結,生成了主觀結果每次結果都不一樣,其輸出的對象是人,律師,法官,顧客,學生等等。 這當然很偉大。

然而工控行業的需求是正好倒過來的,我們做的是從客觀需求到客觀結果的過程,工控工程師的工作流程是,拿到一套工藝系統圖,解讀拆分其中的電氣需求, 元件選型,編程調試,生產。不同的人習慣可能不同,但只要有規范限制,設計結果 總是相同的。

那么最極致的需求會是,我直接把工藝圖, 或者語言總結的工藝需求,喂給GPT,它直接生成PLC可執行的程序代碼,下載到PLC中,設備就直接運行起來了?

然后公司就可以完全不需要這個工控工作的工程師了?

我覺得幾十年內斷無可能。

所以,咱們還是該做啥做啥去吧!